Упражнения в процессе выполнения которых энергообеспечение. Роль аэробного механизма энергообеспечения в борьбе. Общая характеристика систем энергообеспечения мышечной деятельности

Снабжение сокращающихся мышц энергией происходит при химических превращениях, идущих без участия кислорода, - анаэробный гликолиз - и при участии его - окислительное (аэробное) фосфорилирование. Кислород требуется не только для аэробного фосфорилировання, но и для частичного окисления молочной кислоты (лактат) - конечного продукта анаэробного расщепления гликогена.

Наибольшее значение имеет окислительное фосфорилирование, так как оно позволяет более эффективно использовать энергию химических превращений в мышцах и тканях. Анаэробные процессы энергообразования включаются при недостатке кислорода как вспомогательный механизм. Таким образом, функция кислородного обмена заключается в образовании энергии, необходимой для различного рода физиологических процессов, в том числе в сократительной деятельности мышц.

Основные химические реакции энергетических процессов происходят в особой части клеток (митохондриях), куда поступает кислород. В митохондриях клеток образуется аденозинтрифосфорная кислота (АТФ), являющаяся универсальной формой накопления энергии в ее фосфорных связях. Трансформация химических реакций с участием АТФ в механическую работу осуществляется сократительным белковым материалом мышц - актином и миозином. Сложная белковая структура актомиозин под влиянием АТФ способна сокращаться, а последняя при этом распадается до АДФ и АМФ (аденозин-дифосфорная и аденозинмонофосфорная кислоты). Запасы АТФ в мышечной ткани ограничены, поэтому для выполнения значительной мышечной работы требуется постоянное восполнение запасов этого соединения.

Восстановление (ресинтез) АТФ происходит как за счет макроэргических соединений, содержащихся в мышце (креатинфосфат), так и за счет макроэргических соединений, образующихся в ней в процессе мышечной деятельности.

Креатинфосфат имеет большое значение в процессах мышечного сокращения, играя роль энергетического депо. При этом его депо пирующая способность энергии выше, чем у АТФ. Однако креатинфосфат не реагирует с сократительным веществом мышц (актомиози- ном), а вступает в реакцию лишь с АДФ.

Креатинкиназная реакция протекает чрезвычайно быстро, и она характерна для кратковременных интенсивных физических нагрузок

Ресинтез АТФ за счет макроэргических фосфорных соединений, образующихся в процессе мышечной деятельности, может осуществ ляться путем гликолитического и дыхательного фосфорилировання

Гликолитическое фосфорилирование, подобно креатинкиназной реакции, - анаэробный путь ресинтеза АТФ. В связи с тем, что углеводные запасы организма, особенно у верховых лошадей, достаточно велики, гликолиз может обеспечивать ресинтез АТФ длительное время.

Ресинтез АТФ гликолитическим фосфорилированием является преобладающим при мышечных нагрузках максимальной интенсивности, когда появляется резкое несоответствие между сильно возросшей потребностью организма в кислороде и ограниченными возможностями ее удовлетворения. Конечный продукт анаэробного распада углеводов - молочная кислота.

При максимальной активности мышц образуется избыток молочной кислоты, диффундирующей в кровь. После максимальной работы, например после быстрой скачки или бега, наблюдаются учащенное дыхание и усиленное по сравнению с состоянием покоя потребление кислорода. Повышенное количество кислорода, потребляемое в восстановительном периоде, называется кислородным долгом и расходуется на окисление в тканях печени и сердца некоторой части избытка молочной кислоты (до 1 / 4), образовавшегося в период максимальной мышечной активности. Остальная часть избытка молочной кислоты, накопившаяся в крови при быстром беге, снова превращается в печени в гликоген.

Важную роль в мышечной энергетике играют процессы окисления пировиноградной кислоты, являющейся предшественником молочной кислоты при анаэробном фосфорилировании. Большая часть пиро-виноградной кислоты является основой для аэробного расщепления углеводов и других окислительных реакций.

Обязательное условие аэробного окисления - хорошее снабжение организма кислородом. Такой путь ресинтеза АТФ характерен для нагрузок средней и умеренной интенсивности, когда потребность организма в кислороде может полностью удовлетворяться.

Большая часть аэробных окислительных превращений идет на обеспечение двигательной деятельности. При мышечной работе уровень потребления организмом кислорода возрастает во много раз. Скелетные мышцы при напряженной работе могут увеличивать потребление кислорода в 100 раз. Следовательно, доставка необходимого количества кислорода для обменных процессов в мышцах является решающим условием, обеспечивающим двигательную деятельность организма лошади.

В процессе энергетического обмена происходит потребление организмом кислорода и выделение углекислоты. Важное значение имеет соотношение выделенная углекислота: потребляемый кислород - так называемый дыхательный коэффициент, определенным образом отражающий характер обмена веществ. Дыхательный коэффициент имеет сложную динамику и во время работы претерпевает изменения. У лошадей при движении шагом он колеблется в пределах единицы, а при более интенсивном движении уменьшается вследствие истощения углеводов и постепенного вовлечения в обмен белков и жиров. Таким образом, дыхательный коэффициент указывает, какое энергетическое вещество окисляется. При окислении углеводов он равен единице, при окислении белков - 0,8, жиров - 0,7.

По количеству потребленного кислорода при определенном дыхательном коэффициенте можно рассчитать затраты калорий, необходимых для обеспечения той или иной работы.

Минимальный уровень обмена веществ при полном мышечном покое называется основным обменом. У лошадей основной обмен неодинаков и зависит от возраста, массы, породы и других факторов. Зная данные основного обмена и затраты при движении, можно определить общее количество энергии, расходуемой лошадью на разных аллюрах при прохождении той или иной дистанции (табл. 1).

Таблица 1. Расход энергии у верховых лошадей в килокалориях при работе под седлом при массе всадника 80 кг * (по Г. Г. Карлсену)

* (С учетом кислородного долга; в 1 ккал содержится 4,18 кДж. )

Затраты энергии при движении шагом у лошадей составляют 0,58-0,71 ккал на 1 кг/км. При переходе на движение рысью повышается расход энергии в единицу времени примерно в 2 раза, то есть пропорционально увеличению скорости движения. В то же время при расчете на единицу пути эти изменения незначительны.

Следует отметить, что величина потребления кислорода характеризует уровень окислительно-восстановительных процессов в организме, а мерой участия процессов анаэробного образования энергии при мышечной деятельности является кислородный долг. Сумма этих величин, то есть потребления кислорода во время работы и кислородного долга, составляет уровень кислородного запроса и является показателем энергозатрат организма

Конспект по мотивам «ЧСС, лактат и тренировки на выносливость» (Янсен Петер)

Работающим мышцам необходима энергия. Аденозинтрифосфат (АТФ) — это универсальный источник энергии. АТФ распадается до аденозиндифосфата (АДФ). При этом высвобождается энергия.

АТФ → АДФ + энергия

При интенсивной мышечной работе запасы АТФ расходуются за 2 секунды. АТФ непрерывно восстанавливается (ресинтез) из АДФ. Выделяют три системы ресинтеза АТФ:

  • фосфатную,
  • лактатную,
  • кислородную.

Фосфатная система ресинтеза АТФ

Быстрый ресинтез АТФ в мышцах идет за счет креатинфосфата (КрФ). Запаса КрФ в мышцах хватает на 6-8 секунд интенсивной работы.

КрФ + АДФ → АТФ + креатин

При максимальной нагрузке фосфатная система истощается в течение 10 секунд. В первые 2 секунды расходуется АТФ, а затем 6-8 секунд — КрФ. Через 30 секунд после физической нагрузки запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут — полностью.

Фосфатная система важна для взрывных и кратковременных видов физической активности — спринтеры, футболисты, прыгуны в высоту и длину, метатели диска, боксеры и теннисисты.

Для тренировки фосфатной системы непродолжительные энергичные упражнения чередуют с отрезками отдыха. Отдых должен быть достаточно длительным, чтобы успел произойти ресинтез АТФ и КрФ (график 1).

Через 8 недель спринтерских тренировок количество ферментов, которые отвечают за распад и ресинтез АТФ, увеличится. После 7 месяцев тренировок на выносливость в виде бега три раза в неделю запасы АТФ и КрФ вырастут на 25-50%. Это повышает способность спортсмена показать результат в видах деятельности, которые длятся не более 10 секунд.

Фосфатная система ресинтеза АТФ называется анаэробной и алактатной , потому что не нужен кислород и не образуется молочная кислота.

Кислородная система ресинтеза АТФ

Кислородная (аэробная) система ресинтеза АТФ поддерживает физическую работу длительное время и важна для спортсменов на выносливость. Энергия выделяется при взаимодействие углеводов и жиров с кислородом. Окисление углеводов требует на 12% меньше кислорода по сравнению с жирами. При физических нагрузках в условиях нехватки кислорода энергообразование происходит в первую очередь за счет окисления углеводов. После исчерпания запаса углеводов к энергообеспечению подключаются жиры. Запаса углеводов (гликоген в печени и мышцах) хватает на 60-90 минут работы субмаксимальной интенсивности. Запасы жиров в организме неисчерпаемы.

Важно!!! Тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Тренированный человек экономит углеводы, запасы которых небезграничны.

Окисление жиров:

Жиры + кислород

Углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз):

Первая фаза: глюкоза + АДФ → АТФ + молочная кислота

Вторая фаза: молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода

Чем больше кислорода способен усвоить организм человека, тем выше аэробные способности. Высокие показатели лактата во время нагрузки указывают на несостоятельность аэробной системы. Тренировки могут улучшить аэробные способности на 50%. При недостатке кислорода молочная кислота накапливается в работающих мышцах, что приводит к ацидозу (закислению) мышц. Болезненность мышц — это характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца).

Важно!!! Ацидоз начинается на ускорение. При нарастающем ацидозе спортсмен не способен поддерживать тот же уровень нагрузки. Спортсмен, способный оттягивать момент ацидоза, с большей вероятностью выиграет гонку.

Лактатная система ресинтеза АТФ

Прсле определенного уровня интенсивности работы организм переходит на бескислородное (анаэробное) энергообеспечение, где источник энергии — исключительно углеводы. Интенсивность мышечной работы резко снижается из-за накопления молочной кислоты (лактата).

Глюкоза + АДФ → молочная кислота + АТФ

Ресинтез АТФ идет за счет лактатного механизма:

  • несколько минут в начале любого упражнения пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки;
  • при беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин;
  • в беге на 1500 м вклад аэробного и анаэробного энергообеспечения — 50/50;
  • при кратковременном увеличении интенсивности работы — при рывках, преодолении подъемов, во время финишного броска, например, на финише марафона или велогонки.

Лактат может быть в 20 раз выше нормы. Максимальная концентрация молочной кислоты достигается в беге на 400 м. С увеличением дистанции концентрация лактата снижается (График 2).

Отрицательные эффекты высокого лактата

  • Мышечная усталость. Если начать длительный бег в высоком темпе или рано приступить к финишному рывку, мышечная усталость, вслед за ростом концентрации лактата, не даст спортсмену выиграть гонку.
  • Ацидоз (закисление) мышечных клеток и межклеточного пространства. Может потребоваться несколько дней, чтобы ферменты снова нормально функционировали и аэробные возможности полностью восстановились. Частое повторение интенсивных нагрузок (без достаточного восстановления) приводит к перетренированности.
  • Повреждение мышечных клеток. После напряженной тренировки в крови повышается уровень мочевины, креатинкиназы, аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Это указывает на повреждение клеток. Чтобы показатели крови снова пришли в норму требуется от 24 до 96 ч. В это время тренировки должны быть легкими — восстановительными.
  • Нарушение мышечного сокращения влияет на координацию. Тренировки на технику не следует проводить если лактат выше 6-8 ммоль/л.
  • Микроразрывы. Незначительные повреждения мышц могут стать причиной травмы при недостаточном восстановление.
  • Замедляется образование КрФ. Лучше не допускать высоких показателей лактата во время спринтерских тренировок.
  • Снижается утилизация жира. При истощение запасов гликогена энергообеспечение окажется под угрозой, поскольку организм будет не способен использовать жир.

На нейтрализацию половины накопившейся молочной кислоты требуется около 25 минут; за 1 час 15 минут нейтрализуется 95% молочной кислоты. Активное восстановление («заминка») очень быстро снижает лактат. В восстановительной фазе лучше выполнять непрерывную, а не интервальную работу (График 3).

Энергетические запасы

Важно!!! Запаса АТФ хватает на 2-3 секунды работы максимальной мощности. Креатинфосфат (КрФ) расходуется через 8-10 секунд максимальной работы. Гликогеновые запасы заканчиваются через 60-90 минут субмаксимальной работы. Запасы жира практически неисчерпаемы (График 4).

Таблица 1.1 Порядок подключения энергетических систем при физической нагрузке максимальной мощности. Анаэробный — без участия кислорода; аэробный — с участием кислорода. Алактатный — молочная кислота не вырабатывается; лактатный — молочная кислота вырабатывается.

Продолжительность нагрузки

Механизмы энергообеспечения

Источники энергии

Примечания

1-5 секунд

6-8 секунд

Анаэробный алактатный (фосфатный)

9-45 секунд

Анаэробный алактатный (фосфатный) + анаэробный лактатный (лактатный)

АТФ, КрФ + гликоген

Большая выработка лактата

45-120 секунд

Анаэробный лактатный (лактатный)

Гликоген

По мере увеличения продолжительности нагрузки выработка лактата снижается

2-4 минуты

Аэробный (кислородный) + анаэробный лактатный (лактатный)

Гликоген

Аэробный

Гликоген + жирные кислоты

Чем выше доля жирных кислот в энергообеспечении, тем дольше продолжительность нагрузки

Важно!!! В 1 г жира 9 ккал, а в 1 г углеводов 4 ккал. Жиры не связаны с водой, а углеводы связаны с большим количеством воды. Если запасы в виде жиров заменить на углеводы, то масса нашего тела увеличится вдвое. В весовом исчислении жиры являются эффективным источником энергии. Поэтому перелетные птицы запасают исключительно жиры. Жир — идеальный источник энергии для продолжительных нагрузок при ограниченном поступление пищи.

У спортсменов на выносливость показатель жира в среднем 10%. Это важный показатель физического состояния спортсмена. У каждого спортсмена существует свой идеальный процент жира. Идеальный процент жира находиться в диапазоне от максимально низкого (4-5%) до относительно высокого (12-13%).

Запаса углеводов хватает в среднем на 95 минут марафонского бега, жировых запасов хватит на 119 часа. Но чтобы получить энергию из жира требуется больше кислорода. Из углеводов можно синтезировано больше АТФ в единицу времени. Поэтому углеводы — это главный источник энергии во время интенсивных нагрузок. Когда заканчиваются запасы углеводов, вклад жира в энергообеспечение работы возрастает, а интенсивность нагрузки снижается. В марафоне это происходит в районе 30-километровой отметки — после 90 минут бега.

Механизмы энергообеспечения организма человека при мышечной работе.

Любая мышечная деятельность сопряжена с использованием энергии, Непосредственным источником которой является АТФ (аденозинтрифосфорная кислота). АТФ называют универсальным источником энергии. Все осталь­ные энергопроцессы направлены на воспроизводство и поддержание её уровня. АТФ во время мышечной работы восстанавливается с такой же скороростью, как и расщепляется. Восстановление АТФ может осуществляться двумя спос-ми: анаэробным (в ходе реакции без кислорода) и аэробным (с различ­ным уровнем потребления кислорода) с участием специального энергетического вещества креатинфосфата. Готового для синтеза АТФ креатинфосфата хватает только на 10-15 секунд мощной работы. В таких условиях синтез АТФ идёт при остром дефиците кислорода (например, вот почему невозможно || с нринтерском темпе пробежать 800 м). Мышечная работа очень высокой ин-м интенсивности осуществляется в анаэробном режиме, когда синтез АТФ совершается при остром дефиците кислорода. В этом случае организм добывает для г.к ми 1,1 АТФ, используя процесс гликолиза - превращения углеводородов, в результате которого вновь происходит ресинтез АТФ, и образуются конечные Кислые продукты - молочная (лактат) и пировиноградная кислоты.



Гликолиз обеспечивает работоспособность организма в течение 2-4 ми-н т.е. креатинфофатный механизм и гликолиз дают энергии совсем немного.

При высокой функциональной напряжённости в мышцах уменьшается содержание энергонасыщенных углеводов (гликогена и фосфорных - креатин-фосфата), в крови снижается уровень глюкозы, в печени - гликогена.

Аэробный механизм (когда запросы организма в кислороде полностью удовлетворяются) окисления питательных веществ с образованием креатин­фосфата и синтеза АТФ является наиболее эффективным и может обеспечивать работоспособность человека в течение нескольких часов. В этих условиях организм добывает энергии АТФ во много раз больше, чем при гликолизе.

Следует отметить, что в клетках все превращения углеводов, жиров, органических кислот и, в последнюю очередь, белков на пути к синтезу АТФ проходят в митохондриях. В обычных условиях работает часть митохондрий, по мере увеличения потребности мышц в энергии в процессе синтеза макроэнергетических соединений включается всё больше «подстанций».

Способность человека к синтезу АТФ, мощность и ёмкость каждого уровня индивидуальны, но диапазон всех уровней может быть расширен за счёт тренировки. Если запросы возрастают, в клетках увеличивается количество митохондрий, а при ещё большей потребности - убыстряется темп их обновления.

Работающим мышцам необходима энергия. Следовательно, любая физическая нагрузка требует поставки энергии. В нашем организме существуют разные системы энергообеспечения, каждая из которых имеет свои особенности. Составление оптимальной тренировочной программы возможно только при хорошем знании принципов энергообеспечения.

Если прислушаться к своему организму, то можно достаточно точно установить, какая именно из систем в данный момент задействована для снабжения работающих мышц энергией. Однако, на практике, многие спортсмены не прислушиваются к сигналам своего организма, в соответствии с которыми они могли бы вносить изменения в свою тренировочную программу. Многие спортсмены тренируются слишком интенсивно или слишком однообразно, некоторые тренируются с чрезмерно низкой интенсивностью. Как бы то ни было, ни те, ни другие, никогда не смогут достичь желаемых результатов. Установить оптимальную тренировочную интенсивность можно двумя способами: при помощи замеров уровня лактата (молочной кислоты) в крови или при помощи регистрации частоты сердечных сокращений (ЧСС). Используя оба или один из этих методов, спортсмены часто добиваются более высоких результатов даже при меньшем объеме и интенсивности тренировок.

Энергетические системы

В организме человека существует такое высокоэнергетическое химическое вещество как аденозинтрифосфат (АТФ), которое является универсальным источником энергии. Во время мышечной деятельности АТФ распадается до аденозинфосфата (АДФ). В ходе этой реакции высвобождается энергия, которая непосредственно используется мышцами для энергии.

АТФ -> АДФ + энергия

организме поддерживается относительное постоянство этого вещества, что позволяет мышцам работать без остановки.

Выделяют три основных системы ресинтеза АТФ: фосфатную, лактат-ную и кислородную.

Фосфатная система

Фосфатный механизм ресинтеза АТФ включает использование имеющихся запасов АТФ в мышцах и быстрый ее ресинтез за счет высокоэнергетического вещества креатинфосфата (КрФ), запасы которого в мышцах ограничиваются 6-8 с интенсивной работы. Реакция ресинтеза АТФ с участием КрФ выглядит следующим образом:

КрФ + АДФ → АТФ + креатин

Фосфатная система отличается очень быстрым ресинтезом АТФ из АДФ, однако она эффективна только в течение очень короткого времени. При максимальной нагрузке фосфатная система истощается в течение 10 с. Вначале в течение 2 с расходуется АТФ, а затем в течение 6-8 с - КрФ. Такая последовательность наблюдается при любой интенсивной физической деятельности. Фосфатная система важна для спринтеров, футболистов, прыгунов в высоту и длину, метателей диска, боксеров и теннисистов, то есть для всех взрывных, кратковременных, стремительных и энергичных видов физической деятельности.

Скорость ресинтеза КрФ после прекращения физической нагрузки также очень высока. Запасы высокоэнергетических фосфатов (АТФ и КрФ), израсходованных во время нагрузки, восполняются в течение нескольких минут после ее завершения. Уже через 30 с запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 мин восстанавливаются полностью.

Для тренировки фосфатной системы используются резкие, непродолжительные, мощные упражнения, чередующиеся с отрезками отдыха. Отрезки отдыха должны быть достаточно длительными, чтобы успевал происходить ресинтез АТФ и КрФ (график 1).

Уже через 8 недель спринтерских (скоростных) тренировок значительно увеличивается количество ферментов, которые отвечают за распад и ре-синтез АТФ. Если АТФ распадается быстрее, то, следовательно, и высвобождение энергии происходит быстрее. Таким образом, тренировка не только повышает запасы АТФ и КрФ, но и ускоряет процесс распада и восстановления АТФ. Такая адаптация организма (увеличение запасов АТФ/КрФ и повышение ферментативной активности) достигается путем сбалансированной тренировочной программы, включающей как аэробные, так и спринтерские тренировки.

Фосфатная система называется анаэробной, потому что в ресинтезе АТФ не учавствует кислород, и алактатной, поскольку не образуется молочная кислота.

Кислородная система

Кислородная, или аэробная, система является наиболее важной для спортсменов на выносливость, поскольку она может поддерживать физическую работу в течение длительного времени.

Кислородная система обеспечивает организм, и в частности мышечную деятельность, энергией посредством химического взаимодействия пищевых веществ (главным образом, углеводов и жиров) с кислородом. Пищевые вещества поступают в организм с пищей и откладываются в его хранилищах для дальнейшего использования по необходимости. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Запасы гликогена могут сильно варьироваться, но в большинстве случаев их хватает как минимум на 60-90 мин работы субмаксимальной

интенсивности. В то же время запасы жиров в организме практически неисчерпаемы.

Углеводы являются более эффективным "топливом" по сравнению с жирами, так как при одинаковом потреблении энергии на их окисление требуется на 12% меньше кислорода. Поэтому в условиях нехватки кислорода при физических нагрузках энергообразование происходит в первую очередь за счет окисления углеводов. Поскольку запасы углеводов ограничены, ограничена и возможность их использования в видах спорта на выносливость. После исчерпания запасов углеводов к энергообеспечению работы подключаются жиры, запасы которых позволяют выполнять очень длительную работу.

Вклад жиров и углеводов в энергообеспечение нагрузки зависит от интенсивности упражнения и тренированности спортсмена. Чем выше интенсивность нагрузки, тем больше вклад углеводов в энергообразование. Но при одинаковой интенсивности аэробной нагрузки тренированный спортсмен будет использовать больше жиров и меньше углеводов по сравнению с неподготовленным человеком. Таким образом, тренированный человек будет более экономично расходовать энергию, так как запасы углеводов в организме небезграничны.

Производительность кислородной системы зависит от количества кислорода, которое способен усвоить организм человека. Чем больше потребление кислорода во время выполнения длительной работы, тем выше аэробные способности. Под воздействием тренировок аэробные способности человека могут вырасти на 50%.

Окисление жиров для энергии происходит по следующему принципу:

Жиры + кислород + АДФ → углекислый газ + АТФ + вода

Полученный в ходе реакции окисления углекислый газ выводится из организма легкими.

Распад углеводов (гликолиз) протекает по более сложной схеме, в которой задействуются две последовательные реакции:

Первая фаза:

глюкоза + АДФ → молочная кислота + АТФ

Вторая фаза:

молочная кислота + кислород +АДФ → углекислый газ +АТФ + вода

Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение в уровнях развития аэробной и анаэробных составляющих спортивной работоспособности у представителей различных видов спорта. Особенности биохимических изменений в организме в критических условиях мышечной деятельности.

Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий:

  • анаэробную (алактатную) зону мощности нагрузок;
  • анаэробную (гликолитическую) зону;
  • зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы);
  • зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы);
  • зону аэробного энергообеспечения.

Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат + АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается.

Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса. Лактат обладает хорошей, но конечной скоростью проникновения через мембраны и равновесие между его содержанием в мышцах и плазме устанавливается лишь спустя 5-10 мин. от начала работы.

При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии.

Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии. При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д.

Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая из 2-4 повторных упражнений, продолжительностью около 1 мин., выполняемые через равные или сокращающиеся интервалы отдыха. Каждое повторное упражнение должно выполняться с наибольшей возможной интенсивностью. Состояние аэробных и анаэробных процессов энергообеспечения мышечной работы можно охарактеризовать с помощью теста со ступенчатым увеличением нагрузки до "отказа".
Показателями, характеризующими уровень анаэробных систем, являются величины алактатного и лактатного кислородного долга, природа которых рассмотрена ранее. Информативными показателями глубины гликолитических анаэробных сдвигов являются максимальная концентрация молочной кислоты в крови, показатели активной реакции крови (рН) и сдвига буферных оснований (ВЕ).

Для оценки уровня развития аэробных механизмов энергообразования используется определение максимального потребления кислорода (МПК) – наибольшего кислородного потребления в единицу времени, которое может быть достигнуто в условиях напряженной мышечной работы.
МПК характеризует максимальную мощность аэробного процесса и носит интегральный (обобщенный) характер, так как способность вырабатывать энергию в аэробных процессах определяется совокупной деятельностью многих органов и систем организма, ответственных за утилизацию, транспорт и использование кислорода. В видах спорта, где основным источником энергии является аэробный процесс, наряду с мощностью, большое значение имеет его емкость. В качестве показателя емкости используется время удержания максимального кислородного потребления. Для этого вместе с величиной МПК определяется значение «критической мощности»- наименьшей мощности упражнения, при которой достигается МПК. Для этих целей наиболее удобен тест со ступенчатым увеличением нагрузки. Затем (обычно на следующий день) спортсменам предлагается выполнить работу на уровне критической мощности. Фиксируется время, в течение которого может удерживаться «критическая мощность» и изменяется потребление кислорода. Время работы на «критической мощности» и время удержания МПК хорошо коррелируют между собой и являются информативными в отношении емкости аэробного пути ресинтеза АТФ.

Как известно, начальные этапы любой достаточно напряженной мышечной работы обеспечиваются энергией за счет анаэробных процессов. Основная причина этого – инертность систем аэробного энергообеспечения. После развертывания аэробного процесса до уровня, соответствующего мощности выполняемого упражнения, могут возникнуть две ситуации:

  1. аэробные процессы полностью справляются с энергообеспечением организма;
  2. наряду с аэробным процессом в энергообеспечении участвует анаэробный гликолиз.

Исследованиями показано, что в упражнениях, мощность которых еще не достигла «критической», и, следовательно, аэробные процессы не развернулись до максимального уровня, в энергетическом обеспечении работы на всем ее протяжении может участвовать анаэробный гликолиз. Та наименьшая мощность, начиная с которой в выработке энергии на всем протяжении работы, наряду с аэробными процессами, принимает участие гликолиз, получила название "порога анаэробного обмена" (ПАНО) . Мощность ПАНО принято выражать в относительных единицах – уровнем потребления кислорода (в процентах от МПК), достигнутым во время работы. Улучшение тренированности к нагрузкам аэробной направленности сопровождается повышением ПАНО. Значение ПАНО зависит в первую очередь от особенностей аэробных механизмов энергообразования в частности, от их эффективности. Так как эффективность аэробного процесса может претерпевать изменения, например, за счет изменения сопряженности окисления с фосфорилированием, представляет интерес оценки этой стороны функциональной готовности организма. Наиболее важны внутри индивидуальные изменения этого показателя на разных этапах тренировочного цикла. Оценить эффективность аэробного процесса можно также в тесте со ступенчатым увеличением нагрузки при определении уровня кислородного потребления на каждой ступени.
Итак, участие анаэробных и аэробных процессов в энергетическом обеспечении мышечной деятельности определяется, с одной стороны, мощностью и другими особенностями выполняемого упражнения, с другой - кинетическими характеристиками (максимальная мощность, время удержания максимальной мощности, максимальная емкость и эффективность) процессов энергообразования.
Рассмотренные кинетические характеристики зависят от совместного действия множества тканей и органов и по-разному изменяются под воздействием тренировочных упражнений. Эту особенность ответной реакции биоэнергетических процессов на тренировочные нагрузки необходимо учитывать при составлении тренировочных программ.