Что такое физический вакуум и гравитационное поле? Разреженные газы: понятие и свойства. Вакуум Мировой вакуум

) - среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т.д. В зависимости от величины соотношения λ/d различают низкий (λ/d<<1), средний (λ/d~1) и высокий (λ/d>>1) вакуум.

Следует различать понятия физического вакуума и технического вакуума .

Технический вакуум

На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно. Мерой степени разрежения вакуума служит длина свободного пробега молекул газа < λ > , связанной с их взаимными столкновениями в газе, и характерного линейного размера l сосуда, в котором находится газ. Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 Торр) говорят о достижении низкого вакуума (λ < < l )(5000-10000 молекул на 1см3). Обычно низковакуумный насос стоит между атмосферным воздухом и высоковакуумным насосом, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере, увеличивается средняя длина свободного пробега λ молекул газа. При λ > > l молекулы газа уже не сталкиваются друг с другом, а свободно перемещаются от стенки до стенки, в этом случае говорят о высоком вакууме (10 -5 Торр)(1000 молекул на 1 см3). Сверхвысокий вакуум соответствует давлению 10 -9 Торр и ниже. К сожалению в земных условиях пока не получен. Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 -30 Торр и ниже(1 молекула на 1 см3).Встречается полное отсутствие молекул.

Высокий вакуум в микроскопических порах некоторых кристаллов достигается при атмосферном давлении, что связано именно с длиной свободного пробега газа.

Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере, и т. д.

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Физический вакуум

Но, пожалуй, самым наглядным из явлений, которые нельзя объяснить, не используя идею о нулевых колебаниях вакуума, это спонтанное излучение. Самые обыкновенные излучающие спонтанно лампы накаливания не светились бы, если бы вакуум был абсолютной пустотой. Дело в том, что любой объект (а, значит, и возбужденный атом), помещенный в абсолютно пустое пространство, представляет собой замкнутую систему . А поскольку такая система стабильна во времени, то никакого излучения не происходило бы. Уже из этого простого рассуждения понятно, что объяснение спонтанного излучения требует привлечения более сложной модели вакуума, чем классическая абсолютная пустота.

См. также

Примечания

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Физический вакуум" в других словарях:

    физический вакуум - absoliutusis vakuumas statusas T sritis fizika atitikmenys: angl. absolute vacuum; perfect vacuum; physical vacuum vok. absolutes Vakuum, n; physikalisches Vakuum, n rus. абсолютный вакуум, m; совершенный вакуум, m; физический вакуум, m pranc.… … Fizikos terminų žodynas

    физический вакуум - Состояние системы квантовых полей с наинизшей энергией, определенное перенормированным гамильтонианом теории, включающим физические (наблюдаемые) массы, заряды и поля … Политехнический терминологический толковый словарь

    Ртутный вакуумный барометр Эванджелисты Торричелли учёного, впервые создавшего вакуум в лаборатории. Над поверхностью ртути в верхней части запаянной трубки «торричелиева пустота» (вакуум, содержащий пары ртути под давлением насыщения … Википедия

    В квантовой теории поля низшее энергетич. состояние квантованных полей, характеризующееся отсутствием к. л. реальных ч ц. Все квант. числа В. ф. (импульс, электрич. заряд и др.) равны нулю. Однако возможность виртуальных процессов в В. ф.… … Физическая энциклопедия

    Вакуум физический, среда, в которой нет частиц вещества или поля. В технике В. называют среду, в которой содержится «очень мало» частиц; чем меньше частиц находится в единице объёма такой среды, тем более высок В. Однако полный В. ≈ среда, в… …

    - (от лат. vacuum пустота), состояние газа при давлении меньше атмосферного. Понятие «В.» применяется к газу в замкнутом или откачиваемом сосуде, но нередко распространяется и на газ в свободном пр ве, напр. к космосу. Степень В. определяют,… … Физическая энциклопедия

    I Вакуум (от лат. vacuum пустота) состояние газа при давлениях значительно ниже атмосферного. Понятие В. применяется обычно к газу, заполняющему ограниченный объём, но нередко его относят и к газу, находящемуся в свободном пространстве,… … Большая советская энциклопедия

    ВАКУУМ - в житейском понимании пустота, отсутствие реальных частиц. В квантовой механике вводится понятие физического вакуума как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента,… … Философия науки: Словарь основных терминов

    Вакуум (от лат. vacuum пустота) среда, содержащая газ при давлениях значительно ниже атмосферного. Вакуум характеризуется соотношением между длиной свободного пробега молекул газа λ и характерным размером процесса d. Под d может приниматься… … Википедия

В науке и технике под вакуумом понимается состояние газа, плотность которого меньше плотности, соответствующей состоянию воздуха на уровне земли. Чем значительнее уменьшение плотности газа, тем лучше вакуум. Вакуум обладает многими полезными свойствами, которые находят широкое применение в различных областях науки и техники. Например, в вакууме резко снижается химическая активность кислорода в процессе окисления металлов.

Другими словами, в вакууме можно сохранять различные химические вещества и использовать их специфические свойства. При очень высоких степенях разрежения поверхности остаются чистыми (без адсорбции хотя бы монослоя газа) в течение нескольких часов, что позволяет проводить исследования таких поверхностей, а также различных явлений, связанных с адсорбированными молекулами газа. Малочисленность молекул остаточного газа в условиях вакуума приводит к тому, что различные частицы могут проходить в таких условиях без столкновений большие расстояния.

Особенно это важно для заряженных частиц - элект ронов, ионов и протонов, траекториями движения которых в вакууме можно управлять с помощью электрических и/или магнитных полей. Такие физические явления, как распространение звука, тепло- и массопере-нос, которые при атмосферном давлении определяются процессами взаимодействия молекул газа, существенно изменяются с уменьшением давления вплоть до того, что роль таких взаимодействий в механизме переноса становится второстепенной.

Упомянутые эффекты, очевидно, зависят от степени разрежения . Таким образом, плотность остаточного в объеме газа является непосредственной мерой вакуума. Однако еще из работ Бойля было известно, что плотность газа прямо пропорциональна давлению, поэтому сложилась общепринятая практика определять степень вакуума по давлению остаточного газа.

Современная вакуумная техника позволяет создавать вакуум, характеризующийся давлением, в 1015 раз меньшим атмосферного. Для удобства весь диапазон достижимых величин разрежения делят на несколько поддиапазонов. Схематично это деление представлено на рис. 1.1, где давление измеряется в Паскалях. На этом рисунке также показаны основные области применения вакуума в зависимости от степени разрежения. Использование вакуума, например в прессах и подъемных механизмах, обусловлено значительными силами, возникающими вследствие разности давлений по обе стороны поршня, а не каких-то особенностей вакуума.

Использование упомянутых выше свойств вакуума предусматривает обеспечение соответствующей степени разрежения, что, в свою очередь, требует применения правильно подобранного оборудования вакуумной системы. Чтобы сконструировать вакуумную систему, обладающую оптимальными характеристиками, необходимо знать не только параметры оборудования, но и все те факторы, которые могут влиять на них. Например, совершенно недостаточно знать, что насос имеет скорость откачки, равную 10 -1 м 3 *с -1 , и позволяет достигать предельного давления 10 -6 Па.

В неудачно сконструированных вакуумных системах параметры оборудования могут оказаться значительно хуже (на порядок величины) по сравнению с оптимальными. Поэтому для достижения оптимальных характеристик оборудования необходимо понимать основные принципы работы вакуумной техники. Это особенно важно для сверхвысокого вакуума (ниже 10 -6 Па), когда число молекул газа, адсорбированных поверхностями вакуумной камеры, может значительно превышать число молекул, находящихся в объеме. В данной главе в конспективной форме рассмотрены основные законы и понятия, относящиеся к вакуумной технике. Более подробные сведения читатель может получить3" из книги П. Редхеда с соавторам

Эфир

Понятие об эфире исходит из глубокой древности – в древнеарийскую эпоху оно относилось к особому состоянию материи, называемому «акаша» (пятый элемент материальной природы). Вот как понятие «акаша» освещено в трактате С. Вивекананды «Раджа-йога»: «Это всюду находящееся и все проникающее нечто. Все, что имеет форму, все, что представляет собою результат соединений, все развилось из этой Акашы. Акаша это то, что стало воздухом, жидкостями, твердыми телами. Она сама не может быть замечаема, так как настолько тонка, что находится вне всех обыкновенных восприятий и может быть видима только тогда, когда станет грубою, примет форму. При начале творения существует только эта Акаша; при конце цикла твердые тела, жидкости и газы, все разложатся опять в Акашу».

Две с половиной тысячи лет назад древние греки подхватили и развили это понятие под именем αιυηρ (эфир, небо). В 1618 г. французский философ, физик и математик Рене Декарт предложил рассмотреть эфир в качестве материального переносчика света. По его представлениям, свет является сжатием, распространяющимся в идеально упругой среде (эфире), которая заполняет все пространство. С тех пор идея эфира прочно вошла в научный оборот, особенно в трудах Ньтона, Френеля, Максвелла, Лоренца . Эфирная концепция достигла кульминации в XIX веке, когда Максвелл, опираясь на созданную им модель эфира, получил фундаментальные уравнения электродинамики.

К началу XX в. сложились два взгляда на эфир: либо он увлекается движением тел, либо не увлекается (неподвижен). Из концепции неувлекаемого эфира следовало неравноправие инерциальных систем и существование привилегированной (связанной с эфиром) системы отсчета называемой абсолютной. Эксперименты, призванные выявить такую систему отсчета и скорость относительно нее, были выполнены Майкельсоном (1881 г.), Морли и их последователями, и продолжались на протяжении всего столетия . Эксперименты дали нулевой результат: движение Земли относительно эфира не выявлено. Это интерпретировалось, как доказательство отсутствия эфира, несмотря на попытки Лоренца объяснить нулевой результат сокращением размеров тел вдоль движения . Ожидаемый результат в этих опытах рассчитывался по законам классической механики, поскольку научная общественность не имела другого аппарата (иной механики) для оценки опыта, на момент его проведения. Однако следует подчеркнуть некорректность применения этих законов для случая распространения света в эфире. Главная особенность классической механики – это требование мгновенности распространения взаимодействий, т.е. законы этой механики справедливы только при условии малости скоростей движения по сравнению со скоростью света. Следовательно, все скорости движений, входящие в Ньютоновскую формулу сложения скоростей (v + c ), также должны удовлетворять этому условию. При расчете опыта Майкельсона – Морли это условие оказалось выполненным только для скорости Земли (v ), второе слагаемое – скорость света (c ) – этому условию явно не удовлетворяет. Таким образом, применение механики Галилея – Ньютона незаконно, поскольку нарушает границы её применимости. Для расчета опыта нужна иная механика , отличная от классической и релятивисткой. Основу этой новой механики составляют существование абсолютной системы отсчета, связанной с эфиром, и вытекающее отсюда неравноправие инерциальных систем. В итоге некорректной интерпретации опытов Майкельсона – Морли , завершившейся построением специальной теории относительности (СТО), был теоретически оформлен отказ от концепции эфира, а вместо эфира, с развитием квантовой теории поля, появился термин «физический вакуум».

Физический вакуум

Вакуум (по-латински vacuum) – пустота, т.е. пространство без материи и энергии. Физический вакуум – пространство, не содержащее реальных частиц и энергии, поддающейся непосредственному измерению. Согласно современным физическим представлениям, это наиболее низкое энергетическое состояние любых квантованных полей, характеризующееся отсутствием реальных частиц. Возможность виртуальных процессов в физическом вакууме приводит к ряду эффектов взаимодействия реальных частиц с вакуумом, регистрируемых экспериментально. Физический вакуум представляет собой множество всевозможных виртуальных частиц и античастиц, которые в отсутствии внешних полей не могут превратиться в реальные. По современным представлениям в вакууме непрерывно образуются и исчезают пары частиц–античастиц: электрон–позитрон, нуклон–антинуклон... Вакуум наполнен такими «не вполне родившимися», появляющимися и исчезающими частицами. Они не поддаются регистрации и называются виртуальными. Однако при определенных обстоятельствах виртуальные частицы становятся реальными. Так, например, столкновения частиц высоких энергий или сильные поля рождают из вакуума снопы различных частиц и античастиц. Т.е. вакуум может быть представлен, как особый, виртуальный тип среды. Виртуальность среды проявляется, в частности, в невозможности выявить факт движения относительно неё никакими экспериментальными методами, что равносильно проявлению принципа относительности. Концепция равноправия инерциальных систем, называемая принципом относительности, является фундаментом теорий породивших понятие о физическом вакууме. Т.е. представления о физическом вакууме были логически получены из принципа относительности. Согласно с данными представлениями, свет не нуждается в материальной среде-носителе, а совокупность фотонов образует свободное электромагнитное поле. Самое низкое энергетическое состояние этого поля называют «вакуумом электромагнитного поля» .

Причины, побуждающие вернуться к концепции эфира

На основе принципа относительности была создана специальная теория относительности. Эта теория объяснила накопившиеся к тому времени экспериментальные данные и стала фундаментом современной физики высоких энергий. Ее с успехом применяют при проектировании ускорителей элементарных частиц и в экспериментах с релятивистскими частицами. Тем не менее, есть серьезные основания для того, чтобы отказаться от принципа относительности, лежащего в основе СТО:

  1. Специальная теория относительности содержит внутреннее противоречие, известное как парадокс двух близнецов. Предпринимались попытки разрешить этот парадокс привлечением общей теории относительности (ОТО), но это имело успех лишь для малых скоростей движения . В общем случае релятивистских скоростей парадокс остается неустранимым. Наиболее отчетливо нарушения причинно следственных связей между событиями выявляются в «парадоксе трех близнецов» (рассмотренном в ), являющимся развитием мысленного эксперимента с близнецами.
  2. Существуют современные эксперименты, устанавливающие зависимость скорости света от направления распространения волны. Серия таких экспериментов была выполнена Стефаном Мариновым, в опытах было выявлено направление распространения световой волны, в котором имеет место превышение скорости света с на величину 360 ± 40 км/с. Результаты экспериментов Маринова вступают в противоречие с постулатом СТО об инвариантности скорости света.

Изложенные причины явились основанием для отказа от принципа относительности, что естественным образом приводит к идее возрождения концепции эфира, для которой характерны неравноправие инерциальных систем, с одной стороны, и зависимость скорости света от направления распространения волны с другой. Концепция эфира заставляет по иному взглянуть на взаимодействие реальных частиц с виртуальными (представляемое в рамках концепции физического вакуума). Указанное взаимодействие есть не что иное, как взаимодействие реальных частиц с реальным эфиром, исключающим необходимость введения искусственных посредников, каковыми являются виртуальные частицы.

Теоретическое обоснование концепции эфира

Не касаясь конкретных моделей эфира, выделим два его свойства, необходимые для дальнейшего изложения: свойство среды-носителя взаимодействий и его неувлекаемость движущимися телами (неподвижность). Таким образом, электромагнитная волна представляет собой распространение возбуждения неподвижной среды-эфира.

Альтернативная интерпретация опытов Майкельсона – Морли

Опыт Майкельсона – Морли в момент становления СТО был проинтерпретирован в соответствии с принципом относительности, а именно: скорость света в любой системе координат имеет одинаковую величину «с » и не зависит от направления распространения волны (т.е. изотропна). Однако из опытов Майкельсона – Морли такой результат не вытекает. В экспериментах Майкельсона – Морли, установлен факт изотропии времени двустороннего распространения света (t + + t – = const) здесь t + ; t – – интервалы времени одностороннего распространения света на отрезке оптической линии длиной L в прямом (от начала отрезка к концу – t +) и обратном (от конца к началу – t –) направлениях. Сторонники принципа относительности, не имея возможности измерить указанные времена раздельно (ввиду отсутствия соответствующей техники и технологии) и опираясь на принципиально неверный расчет опыта, трактовали его результат, как равенство времен t + и t – , отбросив очевидную альтернативную версию: «t + не равно t – , при условии t + + t – = const ». Если ввести величину, называемую скоростью двустороннего распространения света и определяемую как: c = 2L /(t + + t ) , то для этой величины (а вовсе не для скорости одностороннего распространения света) из опытов Майкельсона – Морли действительно вытекает инвариантность и изотропность (см. подробнее в ).

Такое, казалось бы, незначительное отличие в интерпретации опыта Майкельсона – Морли приводит к диаметрально противоположному результату: к отказу от принципа относительности и к возрождению концепции эфира.

Теория светоносного эфира (СЭТ)

Альтернативная, корректная интерпретация опытов Майкельсона – Морли позволила построить теорию на следующих постулатах:

  1. О существовании среды распространения взаимодействий (эфира, не увлекаемого движущимися телами) и связанной с ней абсолютной системы отсчета; свет в указанной среде распространяется прямолинейно и изотропно со скоростью с = 299792458 ± 1,2 м/с.
  2. Об инвариантности скорости двустороннего распространения света в инерциальных системах отсчета. Из постулатов вытекают преобразования координат и времени для двух систем отсчета (OX 1 Y 1 Z 1) и (OX 2 Y 2 Z 2), движущихся относительно абсолютной системы с разными скоростями v 1 и v 2 (называемыми в дальнейшем абсолютными) (см. ):
x 2 = (x 1 – u 01 t 1)/γ; y 2 = y 1 ; z 2 = z 1 ;
t 2 = γ t 1 ;
u 02 = –u 01 /γ 2 ;
(1)

Здесь u 01 – относительная скорость системы (OX 2 Y 2 Z 2), измеренная в (OX 1 Y 1 Z 1), а u 02 – скорость системы (OX 1 Y 1 Z 1 ) относительно (OX 2 Y 2 Z 2 ). Следует отметить, что u 01 не равно u 02 , в отличие от СТО, в которой относительные скорости систем отсчета имеют одинаковую величину. Из формулы t 2 = γt 1 вытекает зависимость скорости течения времени (темпа хода часов) от абсолютной скорости движения инерциальных систем. Системы, имеющие разные абсолютные скорости v 1 и v 2 , не равноправны: темп хода часов выше в системе отсчета, имеющей меньшую абсолютную скорость.

Важным следствием приведенных преобразований является абсолютный характер понятия одновременности событий. События одновременные в одной инерциальной системе отсчета (dt 1 = 0) будут одновременны в любой другой системе (dt 2 = 0), что принципиально отличается от СТО. Соответственно сокращение размеров тел, вытекающее из преобразований (1), является отражением сближения атомов и молекул, составляющих тела вдоль направления движения. В СТО сокращение размеров тел имеет совершенно иной характер, а именно, является следствием неодновременности событий (события, произошедшие одновременно в одной системе отсчета, в другой инерциальной системе отсчета одновременными не являются).

Закон преобразования энергии (E ) и импульса (p ) при переходе из одной инерциальной системы отсчета в другую, согласно СЭТ, имеет вид:

p x 2 = γp x 1 , p y 2 = p y 1 , p z 2 = p z 1 , E 2 = (E 1 – u 01 p x 1)/γ.

Связь энергии и импульса в инерциальной системе отсчета, имеющей абсолютную скорость v 0 , определяется соотношением:

(1 – v 0 2 /c 2)E 2 /c 2 + 2(v 0 /c )p x E /c p 2 = m 2 c 2 .

При v 0 /c 1 формула переходит в известное выражение СТО :

E 2 /c 2 – p 2 = m 2 c 2 .

Пространство и время оказываются взаимосвязанными, однако по иным, чем в СТО, законам. Метрику пространства-времени в инерциальной системе отсчета определяют коэффициенты инвариантной квадратичной формы:

ds 2 = c 2 dt 2 – (1 – v 0 2 /c 2)dx 2 – 2v 0 dtdx dy 2 – dz 2 .

Важным следствием такой метрики является анизотропия пространства инерциальных систем. Из такой анизотропии вытекают нарушение закона сохранения момента импульса (отметим, что отклонение от закона сохранения момента для систем отсчета, абсолютная скорость которых мала v 0 /c uv 0 /c 2 , где u относительная скорость вращательного движения), а также зависимость скорости света от направления (α") распространения волны:

с "(α") = с –1 .

Асимптотика преобразований (1):

  1. Преобразования (1) переходят в классические преобразования Галилея – Ньютона при малых относительных скоростях частиц (u 01 /c v 1 /c
  2. Преобразования (1), примененные к частицам, абсолютная скорость которых (v 2) близка к c , переходят в преобразования Лоренца СТО , если мала абсолютная скорость лабораторной (земной) системы отсчета (v 1 /c
  3. Преобразования (1) теряют смысл при v c , что имеет простое физическое объяснение: материя, состоящая из частиц, связанных силами электромагнитного взаимодействия, не может существовать при скоростях, превышающих скорость распространения взаимодействия (частицы материи распадутся, если v c , поскольку при этом условии волна взаимодействия между элементами, составляющими частицы, не успевает за движением этих элементов).

Таким образом, СЭТ представляет собой более общую, чем СТО, механику и позволяет установить границы применимости последней.

Экспериментальное обоснование концепции эфира

Явление анизотропии скорости распространения света в движущихся системах отсчета позволяет экспериментально установить факт движения инерциальной системы отсчета относительно абсолютной. Однако существуют проблемы и закономерности (доказательство которых дано в ), ограничивающие выбор измерительных методик:

  1. Невозможность определения абсолютной скорости объекта интерференционнымиметодами (на оптических линиях, неподвижных в лабораторной системе координат).
  2. Проблема синхронизации часов, разнесенных в пространстве, без предварительного знания величины и направления абсолютной скорости системы отсчета.

Опыты С. Маринова

Серия экспериментов по определению абсолютной скорости Земли, отвечающих вышеуказанным закономерностям, впервые была выполнена Стефаном Мариновым (Австрия). В 1984 г. он поставил эксперимент , являющийся развитием опыта Физо с зубчатым колесом по измерению скорости света. Измерялась разность световых скоростей в двух противоположных направлениях (рис. 1).

Рис. 1. Схема опыта С. Маринова

Свет от лазера разделялся на два луча 1 и 3 (процесс разделения на рисунке не показан) и проходил путь в противоположных направлениях между двумя синхронно вращающимися дисками. Диски с отверстиями по периферии, жестко закрепленные на общей оси, выполняли роль синхронизированных затворов, формирующих импульсы света, проходящие к фотодетекторам 2 , 4 . Абсолютная скорость Земли определялась по формуле:

где ∆I 1 , ∆I 2 – разность токов, регистрируемых в детекторе тока 5 при двух различных частотах вращения оси N 1 и N 2 . Проблема синхронизации затворов решена применением жесткой, механической связи между дисками посредствам вала. Значение абсолютной скорости Земли, определенное в эксперименте, составило 362 ± 40 км/с . Вариант эксперимента на связанных зеркалах, выполненный тем же автором , дал близкий результат.

Описанный опыт Маринова не мог быть выполнен до появления лазерной технологии, позволяющей получать достаточно узкий пучок света. Так, несмотря на то, что идея подобного опыта была предложена еще Майкельсоном и Морли, осуществить его во времена становления СТО было невозможно.

Интерференционный способ определения абсолютных скоростей

Альтернативный способ измерения абсолютных скоростей непосредственно вытекает из закона преобразования (1): t 2 = γt 1 , по которому относительное замедление времени в двух инерциальных системах зависит от их абсолютных скоростей v 1 , v 2 . Рассмотрим двое часов, одни из которых движутся вдоль вектора абсолютной скорости Земли, а вторые в противоположном направлении, соответственно абсолютная скорость одних будет больше абсолютной скорости Земли, а других меньше. Следствием такого движения, как видно из (1), станет замедление темпа хода одних часов и ускорение темпа других по сравнению с часами, неподвижными относительно Земли. Роль часов в описанной ниже идее эксперимента выполняют линии задержки светового сигнала, движущиеся в противоположных направлениях относительно земной системы (рис. 2).

Рис. 2. Интерференционный опыт на движущихся оптических линиях

Свет от источника 1 (лазера) после расщепления 2 проходит через линии задержки 4 и 5 (катушки с намотанным световодом длиной L и показателем преломления n ), с выхода которых световые сигналы поступают на фазовый дискриминатор 3 , регистрирующий сдвиг фаз (∆φ) в момент, когда катушки занимают определенное положение в пространстве. Фазовый дискриминатор и катушки жестко крепятся к цилиндру. Цилиндр со световодами вращается с угловой скоростью ω, так что направление вектора линейной скорости катушек (u ) меняется (u = ωr, где r – радиус цилиндра). Абсолютная скорость Земли определяется по формуле:

Приведем параметры эксперимента, описанного в для длины световой волны λ = 0,5 мкм: высота цилиндра 1,2 м, радиус r = 16 см, скорость вращения ω = 3600 об/мин (u = 60 м/с). Необходимая длина световода L составит 2,5 км, при расчетной точности измерения абсолютной скорости Земли dv = 3 км/с (что на порядок точнее, чем в опыте Маринова).

Эфир и космология

Результаты опытов Маринова позволяют выдвинуть гипотезу о том, что т.н. реликтовое излучение Вселенной является собственным шумом эфира, поскольку значение скорости, измеренное в опытах , близко к скорости Земли (Солнечной системы) по отношению к фону реликтового излучения, полученной из астрономических наблюдений. В этом случае «реликтовое» излучение не является собственно реликтовым, а значит, не служит доказательством происхождения Вселенной по теории Большого взрыва. Другой аргумент сторонников теории Большого взрыва состоит в объяснении красного смещения спектра далеких звезд эффектом Доплера, вследствие разлета галактик. Однако существуют альтернативные объяснения. Например, причинами смещения спектра могут являться: неоднородность эфира – изменение его свойств от центра Вселенной к периферии (в предположении, что наша Галактика находится в центральной области Вселенной), или уменьшение энергии электромагнитной волны вследствие прохождения гигантского расстояния в среде-носителе, при этом поглощенная эфиром доля энергии впоследствии может излучаться в виде шума (предполагается, что процент поглощенной энергии зависит только от пройденного расстояния и не зависит от частоты волны). Концепция эфира позволяет обосновать более естественный взгляд на Вселенную. Вселенная, как и эфир, является вечной, и, следовательно, не нуждается в объяснениях своего происхождения. Составляющие её структурные элементы (галактики) непрерывно обновляются, на смену погибающим, старым рождаются новые, молодые. Иного взгляда на эволюцию Вселенной придерживаются последователи концепции физического вакуума, объясняющие возникновение Вселенной путём взрыва, связанного с рождением элементарных частиц в результате одного из фазовых переходов в вакууме. Вселенная, в соответствии с теорией Большого взрыва, не вечна, её ожидает гибель либо в результате разлета галактик («холодная смерть» – модель расширяющейся Вселенной), либо в результате коллапса («горячая смерть» – модель осциллирующей Вселенной). Соответственно галактики гибнут либо в одиночестве (первая модель), либо коллективно (вторая модель). В истории науки еще не было теории более «оптимистичной», чем теория Большого взрыва.

О том, что теория Большого взрыва является крайне спорной в современной науке, свидетельствуют многочисленные работы ученых – физиков и астрономов. Так шведский астрофизик, лауреат Нобелевской премии Х. Альфвен говорит: «Эта космологическая теория представляет собой верх абсурда – она утверждает, что вся Вселенная возникла в некий определенный момент подобно взорвавшейся атомной бомбе, имеющей размеры с булавочную головку. Похоже на то, что в теперешней интеллектуальной атмосфере огромным преимуществом космологии «Большого взрыва» служит то, что она является оскорблением здравого смысла: credo, quia absurdum («верую, ибо это абсурдно»)! Когда ученые сражаются против астрологических бессмыслиц вне стен «храмов науки», неплохо было бы припомнить, что в самих этих стенах подчас культивируется еще худшая бессмыслица.» .

Заключение

Концепция эфира, возрожденная на основе СЭТ, и экспериментально подтвержденная в опытах Маринова принципиально отличается от концепции физического вакуума, представления о котором развились из принципа относительности. Основные различия двух концепций заключаются в следующем:

  1. Согласно эфирной концепции электромагнитная волна представляет собой распространение возбуждения неподвижной среды-эфира. В инерциальных системах отсчета имеет место зависимость скорости света от направления распространения волны. Альтернативный взгляд сложился в современной физике: свет не нуждается в среде носителе и движется как корпускула, а скорость распространения света изотропна и инвариантна в инерциальных системах.
  2. Все, что нас окружает, находится в эфире. Структура и динамика свойств его элементов определяют такие фундаментальные физические понятия, как пространство и время. Таким образом, эфир, с которым можно связать абсолютную систему отсчета координат и времени, это и есть Абсолютное пространство-время вечной Вселенной. В отличие от эфира, с физическим вакуумом невозможно связать систему отсчета, а возникающая из вакуума Вселенная имеет конечное время жизни.
  3. Эфирной среде присущи все атрибуты материального объекта: она шумит в радиочастотном диапазоне («реликтовое» излучение), является переносчиком электромагнитных волн, относительно эфира можно экспериментально выявить скорость тел и частиц. Физический вакуум в этом смысле – объект виртуальный (не поддающийся непосредственной регистрации).

Признание существования эфира – это окончательный отказ от принципа относительности и переход к представлению о единстве божественного мира, объединяемого всепроникающей средой – эфиром. Эта среда определяет абсолютную систему отсчета пространственных координат и времени. В социальной и духовной сферах, в которые принцип относительности проник в форме либерализма и политеизма, отказ от относительности морально-нравственных ценностей означает абсолютизацию понятий добра, морали и справедливости.

Обухов Юрий Алексеевич,
Захарченко Игорь Иванович,
e-mail: [email protected] .

Источники информации:

  1. Калитеевский Н.И. Волновая оптика. – М.: Высшая школа, 1995.
  2. Лоренц Г.А., в сб. Принцип относительности. – М.: Атомиздат, 1973.
  3. Обухов Ю.А., Захарченко И.И., Светоносный эфир и нарушение принципа относительности , 2001.
  4. Ландау Л.Д., Лифшиц Е.М., Квантовая электродинамика. – М.: Наука, 1989.
  5. Паршин Д.А., Зегря Г.Г. Лекция 27 .
  6. Ландау Л.Д., Лифшиц Е.М. Теория поля. – М., Наука, 1988.
  7. Маринов С. Физическая мысль России. Т. 2, 1995.
  8. Marinov S. General Relativity and Gravitation. 12, p. 57, 1980.
  9. Новиков И.Д. Эволюция Вселенной. М.: Наука, 1983.
  10. Захарченко И.И., Обухов Ю.А. Заявка на изобретение №2001114292, 2001.
  11. Будущее науки. Международный ежегодник. Вып. 12. – М., стр. 64, 1979.

См. также:

  1. Об эфирном ветре . , 1999.
  2. Петров В.В. Опыт Майкельсона – Морли и гипотеза Френеля. , 2001.
  3. Эстерле О.В.

В квантовой теории поля – низшее энергетическое состояние квантовых полей, характеризующееся отсутствием реальных частиц, называют физическим вакуумом . Все квантовые числа физического вакуума равны нулю. При взаимодействии реальных частиц с вакуумом рождаются виртуальные процессы. В случае спонтанного нарушения симметрии вакуумное состояние становиться вырожденным.

Вакуум можно представить наглядно. Это область пространства, из которой удалены все реальные частицы поля и волны. Это идеализированный вакуум. Достичь абсолютного вакуума практически невозможно. Даже в космическом пространстве присутствует разряженный газ, реликтовое излучение и т.д.

Квантовая теория поля показала, что физический вакуум – это не пустое безжизненное пространство, лишенное вещества. Согласно квантовой физике, квантовые эффекты могут приостанавливать действие закона сохранения энергии на очень короткое время. Причиной такого явления является принцип неопределенности Гейзенберга. В течение этого промежутка времени, энергия может быть взята «взаймы» на различные цели, в том числе на рождение частиц. Все возникающие при этом частицы будут короткоживущими, т.к. израсходованная на них энергия должна быть возвращена спустя ничтожную долю секунды. Тем не менее, частицы могут, возникнуть из ничего, обретая мимолетное бытие, прежде чем снова исчезнуть. В пространстве всегда будет присутствовать рой мимолетных частиц, возникновение которых «субсидируется» соотношением неопределенностей Гейзенберга.

Эти частицы - призраки нельзя наблюдать, хотя они могут оставить следы своего кратковременного существования. Они представляют собой разновидность «виртуальных » частиц, аналогичных реальным переносчикам взаимодействий, но не предназначенных для получения или передачи сигналов. Возникнув из пустоты, они снова вернутся в нее. Следовательно, в пустом пространстве в действительности виртуальные частицы кишат. Вакуум не «безжизнен», а полон энергии .

Электрон, перемещаясь в пространстве, оказывается в окружении частиц-призраков: лептонов, кварков и других переносчиков взаимодействия. Своим присутствием они оказывают воздействие на электрон . Даже в состоянии покоя электрон не знает покоя: со всех сторон его непрерывно штурмуют другие частицы, появившиеся из вакуума. Из вакуума виртуальные частицы рождаются парами типа электронно-позитронной пары , которые вскоре вновь «сливаются» в фотон . Следовательно, пространство вокруг электрона в действительности не пусто, а заполнено виртуальными частицами всевозможных сортов, в том числе виртуальными электронами и виртуальными позитронами. Электрон, помещенный в физический вакуум «узнает» о существовании виртуальных частиц, т.к. они влияют на него. Виртуальные позитроны будут притягиваться к электрону, а виртуальные электроны – отталкиваться. Тем самым происходит поляризация вакуума, что нетрудно измерить экспериментально.


Поляризация вакуума приводит к тому, что вокруг электрона возникает своего рода экран. Вследствие экранирования эффективный заряд электрона издалека кажется меньше реального. Введя зонд внутрь облака, мы обнаружили бы, что «голый» электрон имеет больше заряда, чем экранированный электрон.

Квантовая электродинамика (КЭД) предсказала, что энергетический уровень атома водорода должен быть слегка смещенным относительно положения, которое он занимал бы, если бы не существовали виртуальные частицы. Теория очень точно предсказала величину этого смещения . Эксперимент, по обнаружению смещения, осуществил Уиллис Лэмб из Университета штата Аризона. Опыты показали правильность теоретических вычислений. Кроме того, КЭД нашел поправку к магнитному моменту электрона . Чтобы обнаружить расчетную поправку, экспериментаторы сначала усовершенствовали прибор, поднимая точность более чем на девять знаков после запятой, а затем они обнаружили экспериментально указанную КЭДом поправку к магнитному моменту электрона.

Вопросы для самоконтроля

1. Как называют в теории, поле низшего квантового энергетического состояния?

2. Чему равны все квантовые числа в физическом вакууме?

3. Можно ли взять энергию «взаймы» с вакуума для рождения частиц-призраков?

4. Откуда появляются частицы призраки или же виртуальные частицы?

5. Каким образом, доказывается существование виртуальных частиц?

6. Возникновения, каких частиц субсидируется, соотношением неопределённостей Гейзенберга?

7. Чем доказывается, что вакуум не «безжизнен», а полон энергии?

8. Почему электрон в состоянии покоя не будет находиться в покое?

9. Как рождаются виртуальные частицы из вакуума: парами или поодиночке?

10. Почему эффективный заряд экранированного электрона кажется меньше реального, т.е. «голого»?

11. Как называется наука, которая предсказала, энергетический уровень атома водорода слегка смещенного, в присутствии виртуальных частиц?

12. Кто экспериментально измерял смещение энергетического уровня атома водорода в присутствии виртуальных частиц?

13. Чтобы экспериментально обнаружить поправку, к магнитному моменту электрона, экспериментаторы поднимали точность прибора, до какого знака после запятой?

/ Что такое физический вакуум и гравитационное поле?

Что такое физический вакуум и гравитационное поле?

Теперь, когда мы выяснили, что вместо потенциальной энергии работает энергия гравитационного поля, а вместо кинетической энергии существует энергия физического вакуума, настало время разобраться с этими понятиями: вакуумом и полем. А также необходимо понять, как именно вакуум и поле взаимодействуют с веществом. Потому что лишь после выяснения главных особенностей взаимодействия этих трёх субстанций друг с другом можно надеяться, что нам удастся разработать промышленные технологии свободной энергетики. Начнём с вакуума.

В науке под словом «вакуум» понимают две совершенно разные вещи. И чтобы не путаться в понятиях, часто добавляют то или иное прилагательное. Технический вакуум — это отсутствие воздуха или его пониженное давление. Физический вакуум — это своеобразный фундамент, на котором покоится и эволюционирует Вселенная. В настоящей статье под «вакуумом» будет подразумеваться всегда второе понятие, хотя добавление «физический» может часто опускаться. Дать абсолютно точное исчерпывающее понятие физвакууму в принципе невозможно, потому что физвакуум — это некий аналог материи. Но можно постараться определить эту субстанцию через его свойства. Я делаю это следующим образом: физвакуум — это особая среда, формирующая пространство Вселенной, имеющая огромнейшую энергию, участвующая во всех процессах и видимым проявлением которой является наш материальный мир. У тех физиков, кто занимается квантовой механикой и элементарными частицами, никаких сомнений в реальности физвакуума нет, так как его существование подтверждается такими хорошо известными явлениями, как эффект Казимира, эффект Лэмба, уменьшение эффективного заряда быстро движущегося электрона, квантовое испарение чёрных дыр и т.д. Официально считается, что физвакуум обладает минимально возможной энергией, поэтому извлечь из него энергию и преобразовать её в полезную работу невозможно. Однако при этом не учитывается, что в физвакууме всегда имеют место флуктуации, энергия которых оказывается намного выше среднего уровня. Вот за счёт этих флуктуаций мы сможем превратить вакуум в источник неограниченной энергии. Также официально считается, что физвакуум проявляет себя лишь на уровне микромира, а на уровне макромира он себя проявить не может. Однако эффект Казимира и предсказанное Стивеном Хокингом испарение чёрных дыр свидетельствуют об обратном.

Моё мнение по этому поводу следующее: все теоретические споры о формах и возможностях проявления физвакуума следует отложить на будущее, когда мы будем разбираться в этих вопросах намного лучше, а сегодня необходимо исходить только из фактов. Факты же показывают, что энергию извлекать из вакуума можно (см. предыдущую статью «Парадоксы энергии»). Но если продолжать оставаться на официальных позициях о невозможности извлечения энергии, тогда для объяснения приведённых в предыдущей статье энергетических парадоксов придётся идти на нарушение закона сохранения энергии. При этом оказывается, что физвакуум работает на всех мыслимых уровнях: микроуровне (элементарные частицы), макроуровне (наши железки и аппараты) и мегауровне (планеты, звёзды, галактики).

К сожалению, идея физического вакуума используется в основном в квантовой механике и теории элементарных частиц, а также немного в астрофизике, но в других разделах физики она почти не известна. По этой причине многие физические феномены остаются необъяснёнными или объясняются совершенно неправильно. Например, инерция. Что такое инерция — до сих пор не ясно. И ни в одном справочнике или учебнике физики мы не найдём определения данному явлению. Более того, существование инерции вступает в противоречие с третьим законом механики (действие равно противодействию). Согласно этому закону, когда некий объект действует на другой с некоторой силой, всегда возникает новая сила, направленная противоположно от второго объекта к первому: сила тяжести лежащего на основании предмета и противоположно направленная сила реакции основания, сила притяжения электрона к источнику электромагнитного поля и противоположно направленная сила притяжения поля к электрону и т.д. А вот для инерции такой противосилы не существует. Когда автобус резко тормозит, возникает сила инерции и мы под её действием падаем вперёд, но при этом никакой противосилы найти не удаётся. По этой причине иногда инерционные силы пытаются объявить иллюзорными, фиктивными. Однако если сторонник такой точки зрения в резко тормознувшем автобусе набьёт себе большую шишку на голове, насколько эта шишка будет иллюзорна и фиктивна?

Если же предположить, что инерция является сопротивлением физического вакуума, все противоречия и неясности исчезают. Можно предложить хорошую аналогию между инерцией и сопротивлением корабля в воде. Когда корабль рассекает водную среду, он деформирует её и заставляет отдельные объёмы воды двигаться в сторону, то есть прилагает к этим объёмам вполне определённую силу. Как следствие, возникает противосила, которая стремится остановить корабль, чтобы исключить всякую деформацию водной среды. Мы наблюдаем эту противосилу в форме трения. При этом неважно, как именно движется корабль — ускоренно, равномерно, замедленно — но отбрасываемый им в сторону объём воды движется всегда ускоренно, поэтому работа над ним всегда производится и сила сопротивления возникает всегда в полном соответствии с законами механики.

Очень похожая картина возникает при инерции. Когда мы сидим в автомобиле и давим на педаль газа, мы движемся ускоренно и деформируем физвакуум своим неравномерным движением. А он в ответ создаёт силы противодействия в форме инерции, которые тянут нас назад, чтобы нас остановить и тем самым исключить вносимую в вакуум деформацию. Для преодоления сопротивления вакуума приходится выполнять значительную работу, что проявляется в повышенном расходе топлива. Последующее равномерное движение не деформирует физвакуум и он сопротивления не оказывает, поэтому расход топлива оказывается заметно ниже. Торможение автомобиля снова деформирует вакуум и он снова создает силы сопротивления в форме инерции, которые тянут нас вперёд, чтобы оставить в состоянии равномерного прямолинейного движения и тем самым исключить появление новой деформации. Но на этот раз уже не мы совершаем работу над вакуумом, а он над нами и отдаёт нам свою энергию, которая выделяется в форме тепла в тормозных колодках автомобиля.

Однако есть и отличия между сопротивлением корабля в воде и появлением инерции в ускоряющемся автомобиле. Вода не может пройти сквозь корпус корабля и потому она всегда отбрасывается кораблем в сторону. Следовательно, и трение корабля в воде существует также всегда. А вот физвакуум корпусом автомобиля в сторону не отбрасывается, а свободно проходит сквозь него, поэтому взаимодействовать с содержимым автомобиля может лишь при его неравномерном движении.

Такое ускоренно-равномерно-замедленное движение автомобиля является не чем иным, как единичным тактом колебательного движения большой амплитуды и низкой частоты. На стадии ускорения предмета над вакуумом производится работа и ему передаётся некоторая энергия Е1. На стадии замедления уже вакуум производит работу над предметом и отдаёт ему энергию Е2. Одинаковы ли эти энергии? Если вакуум не обладает собственной энергией, то одинаковы. Но так как он обладает собственным громаднейшим потенциалом, отданная энергия Е2 может оказаться больше принятой энергии Е1. Насколько больше — зависит от условий ускорения и торможения. Подбирая правильные условия, мы может добиться того, чтобы вторая энергия оказалась намного больше первой. И тогда мы получаем возможность построить самый настоящий вечный двигатель 2го рода на вакуумной энергии.

Движение по окружности также является неравномерным. Хотя численное значение скорости при таком движении может не меняться, зато постоянно меняется положение вектора скорости в пространстве. По этой причине вращательное движение предмета также деформирует физвакуум, а он в ответ реагирует на это созданием центробежной силы, которая всегда направлена так, чтобы распрямить траекторию вращения и сделать её прямолинейной, в этом случае всякая деформация исчезает. По третьему закону механики не только физвакуум действует на вращающийся предмет центробежной силой, но и предмет действует на вакуум центростремительной силой. Под действием центростремительных сил вакуум устремляется с периферии предмета к его оси вращения, здесь отдельные потоки сталкиваются друг с другом, разворачиваются на 90 градусов (разворачиваются по той же самой причиной, почему разворачиваются две сталкивающиеся водные струи) и вылетают вдоль оси вращения с обеих сторон. Но если предмет вращается равномерно, не меняя своей скорости, тогда эти вылетающие из него вакуумные потоки также движутся почти равномерно. И потому практически не взаимодействуют с материальными объектами. Хотя из-за наличия окружающей вакуумной среды эти потоки слегка тормозятся и потому некоторое взаимодействие всё же происходит, но оно настолько слабо, что обнаружить его можно лишь сверхчувствительными приборами. Например, с помощью так называемой вертушки Лебедева, представляющей из себя лёгкую турбинку с лопастями, одна сторона которых выполнена зеркальной, а другая окрашена в чёрный цвет.

В прошлом физвакуум называли эфиром. Считалось, что эфир отвечает за распространение световых волн. Однако как ни пытались американские физики Майкельсон и Морли зафиксировать наличие эфира в своих экспериментах, успеха они не добились. На основании отрицательного результата данного эксперимента учёные того времени объявили эфир не существующим, а Альберт Эйнштейн создал свою специальную теорию относительности (СТО). Но когда через десять лет он приступил к созданию общей теории относительности (ОТО), он снова заговорил об эфире. Однако джин уже был выпущен из бутылки и общее мнение об отсутствии эфира осталось непоколебленным.

Тем не менее, нашлись еретики от науки, которые не согласились с общим мнением и продолжали считать эфир реально существующим. Одним из них был знаменитый физик и инженер Никола Тесла. Во всех своих построениях и гипотезах он исходил из идеи эфира. Этим и объясняются его невероятные успехи, многие из которых даже сегодня никто повторить не может. Другим еретиком был английский физик Поль Дирак, который математически обосновал идею некой всепроникающей среды, ответственной за рождение элементарных частиц, и существование которой следовало с железной необходимостью из некоторых эффектов квантовой физики. За что впоследствии он был удостоен Нобелевской премии и перестал считаться еретиком. Но так как старое название «эфир» было скомпрометировано, пришлось искать новое название. Вот так и появилось понятие физического вакуума. Если сегодня спросить об эфире и физвакууме учёного, полностью стоящего на официальных позициях, он ответит, что эфира не бывает, зато физвакуум существует.

Но обратим внимание вот на какую вещь: в самом общем смысле эфир и физвакуум являются одним и тем же. Действительно, что такое эфир? Это некая всепроникающая среда, которая отвечает за распространение световых волн. А что такое физвакуум? Это некая всепроникающая среда, которая отвечает за рождение элементарных частиц. И в том, и в другом случае наиболее общим в данных определениях является постулирование всепроникающей среды. А распространение света и рождение элементарных частиц — это уже свойства данной среды. Маловероятно, что имеются две совершенно разных всепроникающих среды, имеющих разные свойства. Для меня это равносильно заявлению, что существуют две совершенно разных разновидности железа, одна из которых отвечает только за свойства теплопроводности, а другая — только за свойства упругости. Более вероятным кажется ситуация, когда эта всепроникающая среда отвечает и за перенос световых лучей, и за рождение элементарных частиц, и за многое иное.

Но почему же Майкельсон и Морли потерпели неудачу в своих попытках фиксации эфира? Ответ оказывается элементарно прост. Потому что в полном соответствии с законами физики эфир лишь тогда взаимодействует с материальными предметами и потому поддаётся обнаружению (точнее, не с самим предметами, а с создаваемыми ими полями), когда его движение относительно предметов является неравномерным. Но при равномерном движении или его отсутствии взаимодействия не происходит и физвакуум оказывается принципиально не наблюдаем. В эксперименте Майкельсона-Морли измерительная установка покоилась относительно планеты. А эфир или физвакуум, обладая определённой массой и гравитацией, притягивается к Земле и создаёт вокруг неё оболочку повышенной плотности, которая перемещается в пространстве вместе с планетой как единое целое. То есть эта оболочка также оказывается неподвижной относительно планеты. Иными словами, эфир и измерительная установка у американских физиков были неподвижны относительно друг друга. Естественно, что они потерпели неудачу в своих попытках.

Для того чтобы зафиксировать наличие эфира, надо либо сам эфир заставить двигаться неравномерно относительно измерительной установки, либо установку двигать неравномерно относительно неподвижного эфира. И такой опыт проделал французский физик Саньяк в 1912 году. Его установка состояла из четырёх зеркал, установленных в углах правильного квадрата, причём вся эта конструкция вращалась с некоторой скоростью v. Предполагалось, что для луча света, движущегося в направлении вращения, скорость будет составлять c = c0+v, а для луча, летящего в противоположном направлении, она окажется равной c = c0-v. И эти лучи при сложении нарисуют нужную интерференционную картинку. Саньяк всегда получал устойчивый положительный результат. Если бы этот эксперимент был выполнен до того, как Майкельсон и Морли приступили к своим опытам, он мог бы служить блестящим доказательством в пользу существования эфира. Но он был выполнен намного позже, когда физики в массе своей уверовали, будто эфира не бывает. Поэтому Саньяк признания у физиков не нашёл. А через два года разразилась мировая война и внимание общественности переключилось на иные проблемы. В итоге о результатах Саньяка просто забыли.

Какова внутренняя структура эфира-физвакуума, из чего он состоит? Ещё до второй мировой войны физики проделали такой опыт. Они пропускали гамма-кванты через тонкую свинцовую мишень и замеряли рассеяние квантов на атомах свинца. В большинстве случаев гамма-излучение отклонялось атомами в стороны, но иногда физики фиксировали вылет из мишени пары электрон+позитрон. Наличие электрона можно было объяснить его выбиванием из атома свинца. Но откуда брался позитрон, ведь в атомах его нет? Этот эффект тогда объяснили через преобразование гамма-излучения в пару частица-античастица. Сегодня мы можем дать иное более правильное объяснение: из-за высокой плотности свинца (и значит, повышенной напряженности создаваемой мишенью собственного гравитационного поля) физвакуум стягивается внутрь мишени и здесь его плотность становится выше, чем в окружающем пространстве, а потому растёт вероятность взаимодействия гамма-излучения с квантами вакуума. Взаимодействуя с вакуумом, гамма-излучение разбивает его кванты на осколки, которые мы воспринимаем в форме частицы и античастицы. Поэтому можно сказать так: мы не знаем в точности, из чего состоит физвакуум или эфир, но чисто условно можно представлять его структуру, как вложенные друг в друга частицы и античастицы. А от такого представления остаётся всего один шаг до постановки простого эксперимента по обнаружению эфира и постройки генератора, извлекающего из эфира энергию.

Может оказаться, что феномен «тёмной материи», о котором сегодня спорят астрофизики, также обусловлен эфиром-физвакуумом. По крайней мере, чисто теоретически получается, что похожий эффект должен иметь место. Когда эфир-физвакуум стягивается к космическому объекту его гравитацией, здесь он образует оболочку повышенной плотности, а вдали от объекта плотность физвакуума становится несколько меньше. Происходит то, что я называю возникновением мегафлуктуации вакуума. Как следствие, отдаленные предметы (планеты вокруг Солнца или галактические рукава вокруг галактического центра) начинают притягиваться к центральному объекту не только его собственной гравитацией, но также гравитацией созданной мегафлуктуации. Внешне это будет проявляться как возникновение дополнительной невидимой массы. И в Солнечной системе подобный эффект, похоже, действует. Я имею в виду аномально высокое торможение американских космических аппаратов «Пионер» и «Вояджер», которые, начиная с пересечения орбиты Нептуна, вдруг стали тормозиться заметно сильнее, чем это допускалось расчётами. Если такое торможение обусловлено утечками топлива или иной чисто технической причиной, тогда торможение было бы различным для разных аппаратов. Но оно одинаково для всех. Следовательно, оно обусловлено некоторой внешней причиной, не связанной с самим аппаратами. Если эфирная мегафлуктуация Солнца кончается на уровне орбиты Нептуна, тогда выйдя за её пределы, американские аппараты стали притягиваться к Солнцу не только его массой, но также массой данной мегафлуктуации.

Нам осталось совсем немного — выяснить, что же такое гравитационное поле? Моя гипотеза такова: любое поле — это та или иная разновидность деформации физвакуума. Если физвакуум состоит из некоторых квантов (вложенные друг в друга частица+античастица), то вполне вероятно, что эти кванты затем соединяются в нити, составляющие пространство. А любую нить можно деформировать четырьмя различными способами: 1)нить можно растянуть, создав продольную деформацию; 2)нить можно изогнуть, создав поперечную деформацию; 3)нить можно закрутить, создав крутильную деформацию; 4)можно изменить взаимное расположение составляющих квантов, не изменяя положение нити в целом. Поперечной деформации должно соответствовать электромагнитное поле (вспомним, что такое электромагнитное излучение — это волна, которая колеблется в поперечном к вектору скорости направлении). Крутильной деформации должно соответствовать новое, так называемое торсионное поле, вокруг которого в последнее время идут жаркие баталии. И тогда продольной деформации должно соответствовать гравитационное поле. А четвертому виду деформации должны соответствовать резонансные колебания. Если я прав в своих предположениях, тогда существуют четыре основных способа извлечения энергии из физвакуума, соответствующие четырём основным видам деформации через три поля и резонанс. Об одном способе через гравитационное поле я уже писал в статье о гравитационной электростанции. А о других способах через другие поля и резонанс будут новые статьи.

С уважением, И. А. Прохоров